3. 検討条件の設定

3-1. 目的

緊急改善計画の検討条件を精査し、事後評価で用いる検討条件としての妥当性を確認する。妥当性を確認する検討条件は以下に示すとおりである。

【検討条件】

■汚水の流入条件:計画汚水量、晴天日汚水水質

■雨水の流入条件:年間降雨量

■除去モデル:高級処理水質、簡易処理高度化施設

3-2. 汚水の流入条件

3-2-1. 計画汚水量

前述のとおり、現況水量と計画汚水量は、近年、同じ推移で約 20,000m3/日となっている。

したがって、緊急改善計画で用いた計画汚水量は妥当と判断できる。

3-2-2. 晴天日汚水水質

前述のとおり、現況水質はばらつきが大きいが計画水質 200mg/L は現況水質変動の範囲内である。

したがって、緊急改善計画で用いた計画水質は妥当と判断できる。

3-3. 雨水の流入条件

3-3-1. 年間降雨量

平成 21 年度計画では、平成 14 年度計画と同様に、代表降雨は平成 11 年度 (1999年度)を用いている。

その後の降雨を追加した検討結果を以下に示す。

年間降雨量の過年度の傾向はほぼ横ばいで、降雨回数は若干の減少傾向にある。

その後の降雨を追加した年間降雨量、降雨回数の平均値について、計画策定時と ほぼ同じであることより、事後評価に用いる代表降雨を平成11年度降雨とする。

年度	年間降雨量	降雨回数	降雨観測所	
平成 4~12 年度(平均)	1725mm	120 回		
平成 4~26 年度(平均)	1721mm	116 回	中央消防署	
平成 11 年度	1645mm	119 回		

表 3-1 合流改善計画における代表降雨

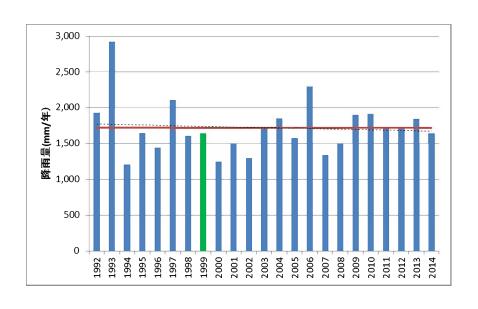


図 3-1 年次別降雨量

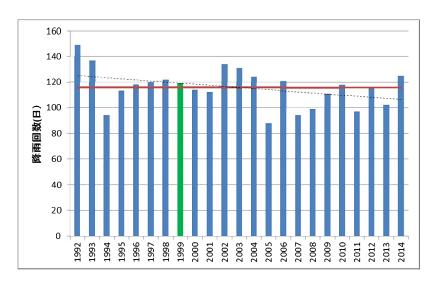


図 3-2 年次別降雨回数

表 3-2 過年度の降雨実績

	防	府	下松		周南市中	周南市中央消防署		
年	年間降雨	降雨日数	年間降雨 降雨日数		年間降雨 降雨日数			
	(mm)	(日)	(mm)	(日)	(mm)	(日)		
1976	1,784	132	1,857	128				
1977	1,387	103	1,687	102				
1978	930	90	1,067	86				
1979	1,811	108	2,024	109				
1980	2,596	138	2,727	132				
1981	1,599	102	1,827	107				
1982	1,437	111	1,735	105				
1983	1,794	115	1,804	99				
1984	1,215	86	1,426	88				
1985	1,914	112	1,938	115				
1986	1,797	106	2,105	100				
1987	1,735	123	1,859	118				
1988	1,230	99	1,525	89				
1989	1,513	114	1,802	106				
1990	1,861	117	2,199	115				
1991	1,950	132	1,921	135				
1992	1,383	113	1,710	115	1,927	149		
1993	2,550	123	2,950	118	2,926	137		
1994	1,024	79	1,351	76	1,208	94		
1995	1,575	110	1,745	92	1,645	113		
1996	1,331	108	1,447	103	1,440	118		
1997	1,878	103	2,087	115	2,108	120		
1998	1,681	114	1,788	113	1,607	122		
1999	1,710	123	1,914	115	1,645	119		
2000	1,222	115	1,310	111	1,245	114		
2001	1,765	109	1,652	112	1,498	112		
2002	1,297	101	1,408	96	1,297	134		
2003	1,810	135	1,988	128	1,728	131		
2004	2,052	115	2,171	108	1,849	124		
2005	1,275	92	1,641	83	1,572	88		
2006	2,092	116	2,357	128	2,300	121		
2007	1,367	99	1,430	90	1,339	94		
2008	1,437	102	1,667	92	1,498	99		
2009	1,887	94	1,981	90	1,898	111		
2010	1,736	111	1,908	108	1,916	118		
2011	1,722	94	1,835	88	1,711	97		
2012	1,643	107	1,766	99	1,737	115		
2013	1,676	97	2,086	95	1,846	102		
2014	1,508	116	1,676	107	1,643	125		
平均	1,645	109	1,830	106	1,721	116		

3-3-2. 分流雨水水質の確認

分流雨水水質は、文献より設定しており、設定に特に問題はない。

◇合流式下水道の場合、分流雨水水質に相当するものとして【分流雨水相当水質】 を次のように定義する。

分流雨水相当水質 $[mg/L] = \frac{$ 合流式総放流負荷 [kg] - 分流汚水放流負荷 [kg] 総雨水量 [+m3]

◇目標とする分流雨水相当水質は、分流式下水道のシミュレーション結果および、 他都市での設定事例より、【BOD 分流雨水水質:20mg/L】と設定する。

【分流雨水並水質 20mg/L の根拠】

文献における分流雨水水質に示すように、文献により数値のバラツキがあるものの、 単純平均値は BOD21mg/L となり、平成 14 年度の前計画と同様、分流式下水道の 雨水相当水質を 20mg/l とする。

文献No	地点名	土地利用	人口密度	排水面積	測	定水質	(水量平均	j値)mg/	Q
			人/ha	ha	BOD	COD	SS	T-N	T-P
1	北九州市(朝日ヶ丘)	-	138. 0	14. 9	68. 9	43. 1	272. 3	3.8	0. 757
	神戸市(花隈)	-	162. 0	12. 4	31.0	38. 1	156. 4	7. 2	1. 038
	山形市(緑町)	-	79. 6	13. 7	23. 5	20. 6	167. 4	4. 2	0. 722
	千葉市(さつきが丘)	_	130. 0	93. 2	21. 1	19.8	47. 9	6.9	0. 310
2	大都市	-	71. 2	13. 7	26. 2	4. 7	101. 3	0.6	0. 225
	中都市	_	152. 2	17. 2	14. 8	14. 3	78. 7	2. 0	0. 185
3	山形市(緑町)	住居	80. 0	13. 7	26. 0	4. 3	80. 5	-	0. 280
	岐阜市(清水川)	商業	231. 0	106. 4	7. 6	-	127. 2	-	-
	神戸市(北須磨)	住居	90. 0	26. 8	7. 7	13. 7	121. 7	-	0. 184
	神戸市(花隈)	住居・商業	157. 0	17. 2	33. 4	19. 4	210. 5	-	0. 323
4	札幌市(野津幌川)	住居・商業	90. 0	101. 4	19. 3	19. 6	117. 9	2. 1	0. 152
	札幌市(真駒内川)	住居	80. 0	112. 3	7. 4	10. 3	118. 5	1.4	0. 147
	札幌市(発寒川)	住居	75. 0	97. 8	13.8	15. 4		2. 0	0. 278
5	横浜市	商業			15. 1	11. 3	38. 3	3. 9	0. 3
		住居・工業			12. 8	12. 1	61. 7	4. 0	0. 3
		住居			6. 9	6. 4	41. 4	2. 7	0. 2
平均値		全体			21. 0	16. 9	123. 8	3. 4	0.36
		住居			12. 4	10. 0	120. 2	2. 0	0. 22
		商業			11. 4	11. 3	82. 8	3. 9	0.30
		住居・商業			26. 4	19. 5	164. 2	2. 1	0. 24
		住居・工業			12. 8	12. 1	61.7	4. 0	0.30
		不明				23. 4	137. 3	4. 1	0.54
採用値	-	· ·			20. 0	, and the second			

表 3-3 各分流雨水調査結果と平均値

- 1. 非特定汚染源負荷調査マニュアル 環境庁水質保全局水質管理課 (1990.3)
- 2. 降雨に伴なう都市域からの汚濁負荷流出 建設省土木研究所 第13回下水道研究発表会公演集(1976)
- 3. 分流式下水道からの雨水流出水に関するデータベース 建設省土木研究所(1980.1)
- 4. 分流雨水の水質解析調査 札幌市 (H12. 9. 7)
- 5. 分流並み水質の検討 横浜市 (H6)

3-4. 除去モデル

3-4-1. 簡易処理高度化施設の除去率

簡易処理の高度化施設の性能確認を行うため、施工会社により四季及び梅雨時期において、高速ろ過設備の除去性能試験が行われている(水処理設備その3工事総括報告書(日立造船株式会社))。除去性能試験結果より、除去率について確認する。

計5回の平均除去率を算出した結果を以下に示す。

表 3-4 より、緊急改善計画上必要な除去率 (31.7/67.7=47%) 以上の性能を有していることを確認した。

したがって、緊急改善計画の設定は妥当と判断できる。

表 3-4 性能確認試験結果(各降雨の平均)

		降雨時間	時間 累積降雨量 時間最大降雨量 総ろ		総ろ過時間	評価対象時間
		(hr)	(mm)	(mm/hr)	(hr:min)	(hr:min)
① 平成26年3月	春 季	28	23	4. 5	17:06	5:52
② 平成26年6月	梅 雨	8	9. 5	2. 5	8:46	6:09
③ 平成26年9月	夏 季	16	4	1	6:07	4:31
	夏季 1	8	1.5	0. 5	1:38	1:38
	夏季 2	8	2. 5	1	4:29	2:53
④ 平成26年9月	秋 季	12	9. 5	2	10:42	10:42
⑤ 平成 26 年 12 月	冬 季	9	12. 5	4. 5	9:44	9:44
最大		28	23	4. 5	17:06	10:42
最小		8	4	1	6:07	4:31

		流入水		処理水			除去率		
		水量	BOD	SS	水量	BOD	SS	BOD	SS
		(m ³)	(kg)	(kg)	(m ³)	(kg)	(kg)	(%)	(%)
① 平成 26 年 3 月	春季	9. 128	2, 203. 0	2, 568. 7	6, 838	349. 3	215. 1	84. 1%	91.6%
② 平成 26 年 6 月	梅雨	21, 381	1, 477. 4	2, 273. 2	19, 346	251. 5	165. 5	83. 0%	92. 7%
③ 平成 26 年 9 月	夏季	9, 219	994. 2	908.0	6, 854	123. 3	16. 2	87. 6%	98. 2%
④ 平成 26 年 9 月	秋季	21, 319	1,779.6	2, 714. 8	19, 308	152. 7	167. 1	91. 4%	93. 8%
⑤ 平成 26 年 12 月	冬季	29, 573	2, 569. 4	3, 319. 1	26, 851	527, 2	528. 9	79. 5%	84. 1%
合計		90, 620	9, 024	11, 784	79, 197	1, 404	1,093	84. 4%	90. 7%
平均		18, 124	1,805	2, 357	15, 839	281	219	85. 1%	92. 1%

	流力	入水	処理水		
	BOD 濃度	SS 濃度	BOD 濃度	SS 濃度	
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
① 平成 26 年 3 月 春季	241. 3	281. 4	51. 1	31. 5	
② 平成 26 年 6 月 梅雨	69. 1	106. 3	13. 0	8.6	
③ 平成26年9月 夏季	107. 8	98. 5	18. 0	2. 4	
④ 平成26年9月 秋季	83. 5	127. 3	7.9	8.7	
⑤ 平成 26 年 12 月 冬季	86. 9	112. 2	19. 6	19. 7	
平均(負荷量より算出)	99.6	130. 0	17. 7	13. 8	
	117. 7	145. 2	21. 9	14. 1	

3-4-2. 高級処理施設の除去率

高級処理の除去率は、実績を確認し98%が妥当であることを確認した。

表 3-5 除去モデルの確認

	除去モデル	対象施設・水量
高級処理	◇BOD 除去率 : 98%	晴天時合流汚水放流量
	・実績より確認済	雨天時高級処理放流量
	◇高級処理の標準的な除去率	
	・設計指針と解説の標準値	
	・新施行令の標準除去性能	

3-5. まとめ

上記検討結果より、緊急改善計画におけるシミュレーション結果を事後評価に用いることは妥当であると判断できる。